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Abstract 

Background: This study investigates the impact of memory effects and nonlocality on 

COVID-19 World Data. The primary objective is to explore the dynamics of the pandemic 

using a hybrid fractional order compartmental model combined with neural networks. 

Methods: The research employs a hybrid fractional order compartmental model alongside an 

artificial neural network. Key procedures include stability analysis of equilibrium points, the 

development of a Disease Informed Neural Network (DINN) by integrating the fractional 

order model with neural networks, and the application of Laplace Transforms to expedite 

fractional derivative computations during neural network training.  

Results: The study identifies optimal fractional order values: 𝛼1 = 0.7899, 𝛼2 =

0.8636, 𝛼3 =  0.8496 , and 𝛼4 = 0.8591. The disease transmission parameters are 

determined as 𝜌 = 0.1730, 𝛿 = 0.0466, and 𝜔 = 0.0018. Numerical simulations are 

conducted, which visually compare the hybrid fractional order compartmental model and 

neural network results against real COVID-19 World Data across all compartments. 

Conclusion: The paper concludes that the developed model effectively captures the dynamics 

of COVID-19, emphasizing the role of memory and nonlocal effects in disease transmission. 

The insights gained from plotting dynamic model behaviors, including minimum and 

maximum solutions, contribute to a comprehensive understanding of disease transmission 

and inform potential interventions.   

 

Keywords: Memory Effects, Fractional Order Compartmental Model, COVID-19, Disease 

Informed Neural Network 

.

INTRODUCTION 

Background 

The outbreak of the COVID-19 pandemic highlighted the urgent 

need for accurate and reliable disease forecasting models. In light of 

the increasing threat of human annihilation as a result of pandemics, 

it is crucial to delve into the mathematical models of infectious 

diseases. This undertaking is indispensable for obtaining a more 

profound understanding of their transmission dynamics and 

controls. The mathematical study of COVID-19 pandemic cut 

across several models including agent-based (Cuevas 2020; Kano et 

al. 2021; Kasereka et al. 2023; Kerr et al. 2021; Krivorotko, 

Sosnovskaia, and Kabanikhin 2023; Silva et al. 2020), 

compartmental, network (Calvetti et al. 2020; Chung and Chew 

2021; Huang et al. 2020; Milić, Milojković, and Jeremić 2022) and 

spatial models (Barnes et al. 2022; Booton et al. 2021; Clement et al. 

2021; Danon et al. 2021; Davidson and Wainer 2021; Maza and 

Hierro 2022).  In search of accuracy many complexities such as 

delays (Arora et al. 2023; Babasola et al. 2022; Scheiner, Ukaj, and 

Hellmich 2020), government interventions (Caldwell et al. 2021; 

Dwomoh et al. 2021; Fang, Nie, and Penny 2020; Mahikul et al. 
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2021), hospitalization (Asteris et al. 2022; Gu et al. 2022; 

Mohammed et al. 2022; Pasco et al. 2020; Rahmani et al. 2022; 

Srivastav et al. 2021a), optimal controls (Abioye et al. 2021; Araz 

2021; Ayalew et al. 2023; Kouidere et al. 2021; Ojo et al. 2022; 

Salama et al. 2023; Sasmita et al. 2020; Shen et al. 2021; Tu et al. 

2023; Zamir et al. 2021) population structure (Arisi and Mantuano 

2020; Blyuss and Kyrychko 2021; Dai et al. 2023; Jimenez-

Rodriguez et al. 2022; Ladner et al. 2020; Tilstra et al. 2023; Yu 

2020), quarantine (Aba Oud et al. 2021; Babaei et al. 2021; Fredj and 

Chérif 2020; Gu et al. 2022; Memon, Qureshi, and Memon 2021; 

Pandey et al. 2021; Prathumwan, Trachoo, and Chaiya 2020; 

Srivastav et al. 2021a), social distance (Badr et al. 2020; Chandra, 

Singh, and Bajpai 2021; Chen et al. 2021; Choi and Ki 2020; Kim et 

al. 2020; Moyles, Heffernan, and Kong 2021; Mwalili et al. 2020), 

stochastic variations (Ali and Khan 2023; Chatterjee et al. 2020; 

Noor et al. 2022; Srivastav et al. 2021b; Thul and Powell 2023; 

Zhang et al. 2020) vaccination (Aldila et al. 2021; Aruffo et al. 2022; 

Ayalew et al. 2023; Bhatter et al. 2023; Diagne et al. 2021; Jentsch, 

Anand, and Bauch 2021; Kahn et al. 2022; Moore et al. 2021; 

Olivares and Staffetti 2021; Shen et al. 2021; Wagner, Saad-Roy, and 

Grenfell 2022; Watson et al. 2022; Yang, Yu, and Cai 2022; Yavuz 

et al. 2021) and waves (Anitha et al. n.d.; Awasthi 2023; González-

Parra and Arenas 2023; Hussain et al. 2022; Kuwahara and Bauch 

2023; Lobato, Libotte, and Platt 2021; Mandal et al. 2021; Martínez-

Fernández et al. 2023; Omede et al. 2023; Singh et al. 2023; Zine et 

al. 2020) were captured.  Fractional calculus in other fields has 

shown promising results in predicting complex systems . Due to the 

limitations of classical mathematical models in accurately 

representing these diseases, the implementation of fractional 

differential equations has emerged as a solution to address these 

issues (Podlubny 1999).  

Review of Literature: 

The advancement of technology and the availability of large-scale 

data, new approaches are emerging to enhance these models' 

accuracy and predictive power. One such approach is  disease-

informed neural networks (DINN)  (Shaier, Raissi, and Seshaiyer 

2021). These neural networks combine the strengths of traditional 

mathematical models and artificial intelligence techniques to 

improve the accuracy of disease forecasting. 

With the availability of data, we will consider  compartmental  model 

of COVID-19 (Nisar et al. 2021) where total population 𝑁 is divided 

into four epidemiological compartments: 𝒰 (susceptible 

compartment), 𝒱 (infected compartment), 𝒫 (recovered 

compartment), and 𝒬 (death compartment). 

 

�̇�(𝑡) = −𝜌
𝒰(𝑡)𝒱(𝑡)

𝑁
,

�̇�(𝑡) = 𝜌
𝒱(𝑡)𝒰(𝑡)

𝑁
− (𝛿 + 𝜔)𝒱(𝑡),

�̇�(𝑡) = 𝛿𝒱(𝑡),

�̇�(𝑡) = 𝜔𝒱(𝑡).

. (1) 

In the model, 𝜌 represents the average number of contacts per 

person per time, while 𝛿 is the recovery rate and 𝜔 stands for the 

death rate. 

In addition to DINN, fractional order compartmental models have 

also been applied in studying the COVID-19 epidemic (A.A. 

Alderremy et al. 2020; Ahmed Boudaoui et al. 2021; Amar Nath 

Chatterjee and Bashir Ahmad 2021; Ebrahem A. Algehyne and 

Muhammad Ibrahim 2021; Faïçal Ndaïrou et al. 2021; Kamal Shah 

et al. 2021; Min Cai, George Em Karniadakis, and Changpin Li 

2022; Olumuyiwa J. Peter et al. 2021; Pushpendra Kumar and Vedat 

Suat Erturk 2020; Samuel Okyere, Ebenezer Bonyah, and Joseph 

Ackora Prah 2022; Shabir Ahmad et al. 2020; S.S. Askar et al. 2021; 

Zizhen Zhang et al. 2020). Fractional order  models introduce 

fractional derivatives into the traditional  framework, allowing for a 

more precise description of the transmission dynamics with 

nonlocality and memory effects. These models consider that 

individuals may exhibit different levels of susceptibility, exposure, 

and infectivity over time. Hybrid   fractional order  models and 

neural networks have proven to be valuable tools in understanding 

and predicting the pandemic and making informed policies 

regarding control measures and resource allocation. These 

approaches have been used in various studies to simulate and 

forecast the evolution of COVID-19, analyze the spread of the virus 

under different scenarios, and assess the effectiveness of different 

control measures (Cai, Em Karniadakis, and Li 2022; De Rosa et al. 

2023; Grimm et al. 2022; Han et al. 2023; Ke, Ma, and Yin 2022; 

Kharazmi et al. 2021; Linka et al. 2022; Long, Khaliq, and Furati 

2021; Malinzi, Gwebu, and Motsa 2022; Mattheakis et al. 2022; 

Nguyen, Raissi, and Seshaiyer 2022; Ning et al. 2022, 2023; Panicker 

et al. 2021; Rodríguez et al. 2023; Schiassi et al. 2021; Shaier et al. 

2021; Torku, Khaliq, and Furati 2021; Treibert and Ehrhardt 2021, 

2022; Wu et al. 2022; Zizhen Zhang et al. 2020). 

Study Aim: 

In this work, the fractional order Model (1) is hybridized with 

Neural Networks, and the resulting algorithm is applied to estimate 

fractional and disease parameters using COVID-19 world data. The 

dynamics of COVID-19 were learned using this hybrid algorithm, 

followed by predictions. Additionally, the solution spectrum was 

analyzed in relation to fractional parameters, enhancing our 

understanding of disease transmission and the effects of memory 

and nonlocality. 

The article is organized in the subsequent manner: Section 2 

explores the basic concepts, whereas section 3 introduces the 

hybridized fractional order Model (1) with Neural Networks. 

Section 4 presents the model training process, along with parameter 

estimation using real-world COVID-19 data. Finally, the paper 

concludes with a comprehensive summary and outlines future work 

in Section 5.  

METHODS  

Basic Concepts 

Numerous fractional derivative definitions have received extensive 

attention in research. Within this paper, we define the following 

useful fractional operators(Podlubny 1999):  

Definition 1 The fractional integral  𝑎𝒟𝑡
−𝛼 of function 𝑓(𝑡) is defined as 

follows:  

 𝑎𝒟𝑡
−𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫

𝑡

𝑎
(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏, (2) 

 where 𝛼 > 0 and Γ(𝑧) = ∫
∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 is the gamma function.  

  

Definition 2 The Caputo derivative with order 𝛼 of function 𝑓(𝑡) is given 

as  

 𝑎
𝑐𝒟𝑡

𝛼𝑓(𝑡) =
1

Γ(𝑛−𝛼)
∫

𝑡

𝑎
(𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏)𝑑𝜏, (3) 

 where 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑍+.  
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Definition 3 The Riemann-Liouville derivative with order 𝛼 of function 

𝑓(𝑡) is defined as  

 𝑎
𝑅𝐿𝒟𝑡

𝛼𝑓(𝑡) =
1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑡

𝑎
(𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝜏)𝑑𝜏, (4) 

 where 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑍+. 

Definition 4 The Grünwald-Letnikov derivative with order 𝛼 of function 

𝑓(𝑡) is defined as follows:  

  𝑎
𝐺𝐿𝒟𝑡

𝛼 = lim
ℎ→0𝑚ℎ=𝑡

ℎ−𝛼 ∑𝑚
𝑟=0 (−1)𝑟 (

𝛼
𝑟
) 𝑓(𝑡 − 𝑟ℎ) (5) 

 where 𝑛 − 1 < 𝛼 < 𝑛.  

The Riemann-Liouville and Caputo definition are connected by the 

following expressed  

 𝑎
𝑐𝒟𝑡

𝛼 =  𝑎
𝑅𝐿𝒟𝑡

𝛼𝑓(𝑡) − ∑𝑛−1
𝑘=0

(𝑡−𝑎)𝑘−𝛼𝑓(𝑘)(𝑎)

Γ(𝑘−𝛼+1)
 (6) 

The Laplace transform of a Caputo fractional derivative with order 

𝛼 > 0 is given by (Ren, Sun, and Dai 2016):  

 

𝔏{ 𝑐𝒟𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝑓(𝑠) − ∑𝑛−1

𝑘=0 𝑠𝛼−𝑘−1𝑓(𝑘)(0), (7) 

 𝑛 − 1 ≤ 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ . It is worthy to mention that  

𝔏{ 𝑐𝒟𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝑓(𝑠) − 𝑠𝛼−1𝑓(0),0 < 𝛼 ≤ 1, (8) 

 in which  

𝔏{𝑓(𝑡)} = 𝑓(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡. (9) 

 

Fractional Model 

Here, the integer order system (1) is transformed into a fractional 

order system by using the Caputo fractional-order derivative. 

Therefore, the fractional-order system is presented for 0 < 𝛼 ≤ 1 

thus:  

 𝑐𝒟𝑡
𝛼1[𝒰(𝑡)] = −𝜌

𝒰(𝑡)𝒱(𝑡)

𝑁
,   

 𝑐𝒟𝑡
𝛼2[𝒱(𝑡)] = 𝜌

𝒱(𝑡)𝒰(𝑡)

𝑁
− (𝛿 + 𝜔)𝒱(𝑡),  (10) 

 𝑐𝒟𝑡
𝛼3[𝒫(𝑡)] = 𝛿𝒱(𝑡),  

 𝑐𝒟𝑡
𝛼4[𝒬(𝑡)] = 𝜔𝒱(𝑡),  

subject to  

𝒰(0) = 𝒰0, 𝒱(0) = 𝒱0, 𝒫(0) = 𝒫0, 𝒬(0) = 𝒬0. (11) 

The COVID-19-free equilibrium (CFE) point of (10) will be 

obtained and analyzed using the next theorem.  

Theorem 1 The CFE point of systems(10) is 𝐸0 = (𝒰0, 𝒱0, 𝒫0, 𝑄0) =

(
𝛿+𝜔

𝜌
, 0,0,0).   

Proof. First, we set the fractional derivatives to zero, that is  

 𝑐𝒟𝑡
𝛼1(𝒰(𝑡)) =  𝑐𝒟𝑡

𝛼2(𝐹(𝑡)) =  𝑐𝒟𝑡
𝛼3(𝒫(𝑡)) =

 𝑐𝒟𝑡
𝛼4(𝒬(𝑡)) = 0. (12) 

From equation (10) and using 0 = 𝜌
𝒱(𝑡)𝒰(𝑡)

𝑁
− (𝛿 + 𝜔)𝒱(𝑡), we 

take 𝒱(𝑡) = 0, then we solve 𝒰(𝑡) =
𝛿+𝜔

𝜌
 and 𝒱 = 0. By 

simplification, we get 𝒫(𝑡) = 0,𝒬(𝑡) = 0. Thus the CFE point is 

𝐸0 = (𝒰0, 𝑉0, 𝒫0, 𝒬0) = (
𝛿+𝜔

𝜌
, 0,0,0) as required.  

Theorem 2 Let 𝑅0 be the Basic Reproduction Number of (10), then CFE 

is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.  

Proof. It can easily be verified via the Next Generation Matrix (Nisar 

et al. 2021) that basic reproduction number of (10) is 𝑅0 =
1

𝑁
.  Also, 

the Jacobian Matrix of the system (10) is 

𝐽 =

[
 
 
 
 
−𝜌𝒱

𝑁

−𝜌𝒰

𝑁
0 0

𝜌𝒱

𝑁

𝜌𝒰

𝑁
− (𝛿 + 𝜔) 0 0

0 𝛿 0 0
0 𝜔 0 0]

 
 
 
 

, (13) 

  and  

𝐽𝐸0
=

[
 
 
 
 0

−(𝛿+𝜔)

𝑁
0 0

0
𝛿+𝜔

𝑁
− (𝛿 + 𝜔) 0 0

0 𝛿 0 0
0 𝜔 0 0]

 
 
 
 

. (14) 

 The characteristics equation of (14) is 

𝑑𝑒𝑡(𝐽 − 𝜆𝐼) =
|

|
−𝜆

−(𝛿 + 𝜔)

𝑁
0 0

0
𝛿 + 𝜔

𝑁
− (𝛿 + 𝜔) − 𝜆 0 0

0 𝛿 −𝜆 0
0 𝜔 0 −𝜆

|

|
= 0. 

 Solving for the eigenvalue is 𝜆, gives 

𝜆 =
𝛿+𝜔

𝑁
− (𝛿 + 𝜔) or 𝜆 = 𝑅0 − 1, which shows that 

𝜆 < 1 if 𝑅0 < 1, as required.  

Disease Informed Neural Networks (DINNs) 

In this section, the data will be fit to the system of equations and 

the DINNs framework is necessary because the loss function has 

two components. The first part represents the mismatch between 

the network output and the available data, while on the other hand 

is the residual of the fractional order model. Training neural 

networks using fractional order model is computationally expensive. 

It is worth noting that, the Laplace transform of Caputo fractional 

derivative is  

𝐿{ 𝑐𝐷𝑡
𝛼𝑣(𝑡)} = 𝑠𝛼𝑣(𝑠) − 𝑠𝛼−1𝑣(0), (15) 

in which 𝑣(𝑠) is the Laplace transform of 𝑣(𝑡). The fractional 

derivative  𝑐𝐷𝑡
𝛼𝑣(𝑡) is approximated using the Laplace transform 

method and a linearization technique proposed by (Ren et al. 2016).  

For 0 < 𝛼 < 1, it follows that:  

𝑠𝛼 ≈ 𝛼𝑠1 + (1 − 𝛼)𝑠0 = 𝛼𝑠 + (1 − 𝛼). (16) 

By substituting (16) into (15) and taking the inverse Laplace 

transform, it follows that  

 𝑐𝐷𝑡
𝛼𝑣(𝑡) ≈ 𝛼𝑣𝑡 + (1 − 𝛼)[𝑣(𝑡) − 𝑣(0)]. (17) 

Consequently, using equation (17), the fractional order system (10) 

becomes 
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�̇�(𝑡) = −
𝜌

𝛼1

𝒰(𝑡)𝒱(𝑡)

𝑁
−

𝛼1−1

𝛼1
(𝒰(𝑡) − 𝒰0),

�̇�(𝑡) =
𝜌

𝛼2

𝒱(𝑡)𝒰(𝑡)

𝑁
− (𝛿 + 𝜔)𝒱(𝑡) −

𝛼2−1

𝛼2
(𝒱(𝑡) − 𝒱0),

�̇�(𝑡) =
𝛿

𝛼3
𝒱(𝑡) −

𝛼3−1

𝛼3
(𝒫(𝑡) − 𝒫0),

�̇�(𝑡) =
𝜔

𝛼4
𝒱(𝑡) −

𝛼4−1

𝛼4
(𝒬(𝑡) − 𝒬0).

. (18) 

The initial conditions remain the same but we recover the classical 

integer model from equation (18) if 𝛼 = 1. Here, 𝚿𝑁𝑁(𝒕; 𝜽Ψ) ≈

𝚿(𝒕) represents the approximation of the system of equations (18). 

The set of parameters denoted by 𝜃 are tuned to attain the optimal 

fit with the data set. If 𝚿𝑗  is points, the mean squared error (MSE) 

is expressed by:  

𝑀𝑆𝐸1 =
1

𝑁
∑𝑁

𝑗=1 |�̂�𝑁𝑁(𝑡𝑗) − 𝚿(𝑡𝑗)|
2
, (19) 

Furthermore, let  

 

ℱ1 = �̇�(𝑡) − (−
𝜌

𝛼1

𝒰(𝑡)𝒱(𝑡)

𝑁
−

𝛼1−1

𝛼1
(𝒰(𝑡) − 𝒰0)) ,

ℱ2 = �̇�(𝑡) − (
𝜌

𝛼2

𝒱(𝑡)𝒰(𝑡)

𝑁
− (𝛿 + 𝜔)𝒱(𝑡) −

𝛼2−1

𝛼2
(𝒱(𝑡) − 𝒱0)) ,

ℱ3 = �̇�(𝑡) − (
𝛿

𝛼3
𝒱(𝑡) −

𝛼3−1

𝛼3
(𝒫(𝑡) − 𝒫0)) ,

ℱ4 = �̇�(𝑡) − (
𝜔

𝛼4
𝒱(𝑡) −

𝛼4−1

𝛼4
(𝒬(𝑡) − 𝒬0)) .

. 

then, Φ𝑁𝑁(𝑡) =
𝑑𝚿(𝑡)

𝑑𝑡
− ℱ(𝚿𝑁𝑁, 𝑡; 𝜉). Specifically, 𝚽(𝑡; 𝜽Ψ) 

measures how accurate Ψ𝑁𝑁(𝑡; 𝜃Ψ) approximates the system (18). 

Moreover, the assessment of the residual necessitates the 

computation of the temporal derivative of the neural network’s 

output, a task that can be executed through the application of 

automatic differentiation (Pollicott, Wang, and Weiss 2012). To 

measure the difference between the anticipated and actual 

outcomes, MSE is calculated by:  

𝑀𝑆𝐸2 =
1

𝑁
∑𝑁

𝑗=1 |Φ𝑁𝑁(𝑡𝑗)|
2
, (21) 

 where 𝑁 is number of data points. Therefore, the loss function of 

the DINN scheme is given as:  

𝑳 = 𝑀𝑆𝐸1 + 𝑀𝑆𝐸2. (22) 

  The schematic diagram for the DINN is presented in Figure 

below:  

  

 

Figure 1: Schematic Diagram of the DINN 

    

RESULTS  

Preparation of Data 

The numerical experiments were conducted to demonstrate the 

impact of our model using COVID 19 data from Johns Hopkins 

Coronavirus Resource Center and WHO reports. The simulations 

begin on January 22nd, 2020,and end on 15th February 2023 

accounting for 1121 days. The summary of the data set is presented 

in Table (1) below:   

Date Confirmed 
Global 

Deaths 
Global 

Recovered 
Global 

22-01-20 557 17 540 

23-01-20 657 18 639 

24-01-20 944 26 918 

25-01-20 1437 42 1395 

⋮ ⋮ ⋮ ⋮ 

⋮ ⋮ ⋮ ⋮ 

11-02-23 672824184 6853702 665970482 

12-02-23 679900930 6854073 666046857 

13-02-23 673037119 6854867 666182252 

14-02-23 673216440 6856055 666360385 

15-02-23 673443203 6857458 666585745 

Table 1: Daily Cumulative COVID-19 Data, total sum from all 

countries.  

Parameters Estimation 

The architecture of a neural network model, designed for DINN 10 

fully connected layers. It takes a single input feature ( representing 

time) and processes it through a series of fully connected layers with 

rectified linear activation function (ReLU) activation. The output 

layer produces predictions for the 𝒰(𝑡), 𝒱(𝑡), 𝒫(𝑡), and 𝒬(𝑡) 

compartments of the model. 

 

Figure 2: Loss function against number of epochs  

The batch size includes the whole time vector. We trained the neural 

networks on Intel(R) Core(TM) i7-4650U CPU @ 2.30 GHz, RAM 

12.0GB 64-bit system. Due to the size of the data and the 
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complexity of the system, training took 26min 36s with 160,000 

epochs to achieve the required accuracy as show in Figure (2). The 

Adam optimizer (Kingma and Ba 2014) was used, and PyTorch’s 

CyclicLR as learning rate scheduler. The parameter passed are: 

base_lr=1e-5, max_lr=1e-3, step_size_up=1000, 

mode="exp_range",  gamma=0.85 and cycle_momentum=False. 

The fractional orders 𝛼1, 𝛼2, 𝛼3, and 𝛼4 have estimated values 

between 0.5798 and 0.8636 . The search range was considered 

between 0 and 1.The disease transmission parameter 𝜌, 𝛿 and 𝜔 

were learned by the neural networks. Specifically, the estimated 

values of 𝜌, 𝛿 and 𝜔 are 0.1730, 0.0466 and 0.0018 , respectively. In 

order to study the impact of memory effect and nonlocality of the 

COVID 19 system, we restricted 𝜌, 𝛿 and 𝜔 to the learned values 

in our numerical experimentation. Furthermore, we focused on 

optimizing the values of 𝛼1, 𝛼2, 𝛼3, and 𝛼4 within the specified 

search range, while keeping 𝜌, 𝛿, and 𝜔 fixed as in Table (2).The 

experiments revealed that fractional-order parameters have a 

substantial impact on the system, indicating the existence of 

memory effects and nonlocal characteristics.   

Parameter Search 

Range 

Minimu

m Value 

Maximum Value Best Value 

𝛼1 0 < 𝛼1 ≤ 1 0.5798 1.0000 0.7899 

𝛼2 0 < 𝛼2 ≤ 1 0.7272 1.0000 0.8636 

𝛼3 0 < 𝛼3 ≤ 1 0.6992 1.0000 0.8496 

𝛼4 0 < 𝛼4 ≤ 1 0.7182 1.0000 0.8591 

𝜌 0 < 𝜌 ≤ 1 0.1730 0.1730 0.1730 

𝛿 0 < 𝛿 ≤ 1 0.0466 0.0466 0.0466 

𝜔 0 < 𝜔 ≤ 1    0.0018 0.0018      0.0018 

  

Table 2: Estimated Parameters 

Trained Model 

We used the following initial conditions as listed in Table (1): 𝒰0 =

𝑁 − 557,𝒱0 = 17,𝒫0 = 540, and 𝒬0 = 0 where 𝑁 =

8025816023 is the world population as of 15th February 2023. In 

Figure (3), we have presented the solutions of different classes fitted 

with the COVID-19 World data for the best values of fractional 

orders and disease transmission parameters (Figure (2)). 

Particularly,The subplots represent the susceptible ( 𝒰 ), 

infected (𝒱 ), recovered ( 𝒫), and death (𝒬 ) cumulative 

populations.  

 

Figure 3: Plot of Raw COVID-19 World Data: Susceptible (𝒰), 

Infected (𝒱), Recovered (𝒫), and Death (𝒬) cumulative 

populations, along with their corresponding fitted solutions 

In Figure (4), we explore the vast potentials allowed by increased 

degrees of freedom of the fractional differential operator, and we 

examine the dynamic behaviours of the model by plotting the 

minimum and maximum solutions. The plot allowed us to visualize 

the disease spectrum of trajectories in response to memory effects 

and non-localities. By utilizing the entire range of geometrical 

variations that fractional orders provide, we could gain a deeper 

understanding of the system’s dynamics. 

 

Figure 4: Plot of minimum and maximum solutions to offer a 

visualization of disease trajectories in response to memory effects 

and non-localities   
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CONCLUSION 

In this paper, the impact of memory effect and nonlocality in 

COVID-19 World Data using hybrid fractional order 

compartmental model and neural networks was investigated. The 

CFE was obtained and its stability analysis examined. The DINN in 

relation to hybrid fractional order compartmental model was 

formulated and used the Laplace Transform to speed up the 

computation of the fractional derivatives during training of the 

neural networks. The best values for fractional orders were 

estimated as 𝛼1 = 0.7899, 𝛼2 = 0.8636, 𝛼3 = 0.8496, and 𝛼4 =

0.8591 while the disease transmission parameters are 𝜌 = 0.1730, 

𝛿 = 0.0466 and 𝜔 = 0.0018. Lastly, the numerical experiments to 

illustrate the hybrid fractional order compartmental model and 

neural networks was presented comparing the simulated results with 

real COVID-19 World Data for all compartments. Also, the 

dynamic behaviours of the model was examined by plotting the 

minimum and maximum solutions. In the future, a study of the 

DINN as explored in this work shall undertaken further but the 

approach shall involve the utilization of variable fractional order 

operators.  
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