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Abstract 

Background: This research investigates the transmission dynamics of Anthrax, a zoonotic 
infectious disease caused by Bacillus anthracis bacteria, with implications for both human and 
livestock populations.  
Methods: It employs a novel integration of mathematical modeling and physics-informed 
neural networks; the study provides a comprehensive analysis of Anthrax spread dynamics. 
Fractional differential equations are formulated within the model to capture the intricate 
interactions governing disease transmission, considering both quantitative and qualitative 
aspects. Special attention is given to the examination of steady-state solutions, particularly the 
local asymptotic stability of the disease-free equilibrium and its associated epidemic basic 
reproduction number. 
Results: The analysis suggests that the model performs well in predicting variables H3 
(Recovered humans), V1 (Susceptible livestock), V3 (Vaccinated livestock), and V4 
(Recovered livestock), while variables H2 (Infected humans) and V2 (Infected livestock) may 
require further investigation or model improvement to enhance predictive performance.  
Conclusion: This study contributes to advancing our understanding of Anthrax transmission 
dynamics and underscores the importance of interdisciplinary approaches in addressing 
infectious disease spread. The insights gained have significant implications for public health 
strategies aimed at Anthrax prevention and control. 
 
Keywords: Anthrax; Physics-informed Neural Networks(PINNs); Fractional Order Models; Epidemic 

Diseases 

 

INTRODUCTION 

Anthrax is an acute zoonotic disease caused by a bacterium called 
Bacillus anthracis (Dassanayake, Khoo, & An 2021). The disease is 
commonly known to affect the animal population both wild and 
domestic (Ruiz-Fons, Segalés, & Gortázar 2008). Particularly, the 
herbivorous set of animals the likes of sheep, goats, cattle, and horses 
tend to be more exposed with a very low resistance to the disease 
while animals like cats, dogs and birds have considerable resistance 
to the disease (Van Soest, 2018). Humans are also susceptible to 
anthrax disease; hence, if they are exposed, they can be infected by 
coming in contact with animals that are infected or the products of 
animals that are infected (Misgie, Atnaf & Surafel, 2015). 

Fractional calculus is the field of mathematical analysis that deals with 
investigating and applying integrals and derivatives of arbitrary order. 
The term fractional is a misnomer but is retained following the 

prevailing use. Fractional calculus may be considered an old and yet 
novel topic. It is an old topic since, starting from some speculations 
of G.W. Leibniz (1695, 1697) and L. Euler (1730), it has been 
developed up to nowadays. The idea of generalizing the notion of 

derivative to non-integer order, in particular to the order 
1

2
, is 

contained in the correspondence of Leibniz with Bernoulli, 
L’Hospital and Wallis. Euler took the first step by observing that the 
result of the evaluation of the derivative of the power function has a 
meaning for non-integer order, thanks to his Gamma function. In 
recent years, fractional-order differential equations have become an 
important tool in mathematical modelling. Although there are many 

possible generalizations, 
𝑑𝑛

𝑑𝑡𝑛
𝑓 (𝑡), the most commonly used 

definitions are Riemann–Louville and Caputo fractional derivatives. 
The former concept is historically the first, and the theory about this 
concept has been established very well by now, but there are some 
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difficulties with applying it to real-life problems. In order to 
overcome these difficulties, the latter concept, Caputo type 
derivative, is defined. This new concept is closely related to the 
Riemann–Louville derivative (Mainardi & Gorenflo, 2013). Demirci 
and Ozalp, (2012) considered the nonlinear Caputo-type fractional 
differential equations of order 0 < α < 1, which are used in modeling 
physical and biological facts. In most of these techniques, either the 
solutions of integer order differential equation versions of the given 
fractional differential equations or the series expansions in the 
neighbourhood of the initial conditions are used. Although the 
human contribution to the transmission of anthrax disease between 
animals is negligible, it becomes a very important subject to discuss 
the transmission of this disease in the animal population only. The 
fractional-order system (FDE) is related to systems with memory, 
history, or nonlocal effects, which exist in many biological systems 
that show the realistic biphasic decline behaviour of infection or 
diseases but at a slower rate (Rezapour, Etemad & Mohammadi, 
2020). 

The aim of this paper is to model the transmission dynamics of 
anthrax disease using a fractional compartmental model and physics-
informed neural networks. This approach leverages the memory and 
nonlocal effects inherent in fractional calculus to provide a more 
accurate and realistic representation of the disease's progression 
within animal and human populations. 

 

2. Background 

In this section, we introduce Anthrax compartmental models both 

integer and fractional order. 

2.1 Anthrax Model 

The compartmental model adopted in this paper was inspired by 
Osman et al, 2018. 

The model divides human and animal populations at the time (t) into 
seven (7) compartments with respect to their disease status in the 
system. In humans, there are three compartments; susceptible, 
infected and recovered humans while in animals there are 4 
compartments; susceptible, infected, recovered and vaccinated 
animals. The integer order of this compartmental model of anthrax 
lacks the precision to capture the intricate and nuanced 
characteristics of anthrax disease transmission. Hence, in this study, 
the model is modified and expressed in fractional order.  

2.1.1 Schematic Diagram 

The total livestock population, VN(t), is subdivided into Susceptible 
livestock, V1(t), Infected livestock, V2(t), Vaccinated livestock, V3(t) 
and Recovered livestock, V4(t). Hence, the total livestock 

population is as follows.  

𝑉𝑁(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡) + 𝑉3(𝑡) + 𝑉4(𝑡) (1) 

Similarly, the total human population, 𝐻𝑁(𝑡), is subdivided into 

Susceptible humans, 𝐻1(𝑡), Infected humans, 𝐻2(𝑡) and Recovered 

humans, 𝐻3(𝑡). Hence, the total human population is as follows. 

𝐻𝑁(𝑡) =  𝐻1(𝑡) + 𝐻2(𝑡) + 𝐻3(𝑡)  (2) 

Figure 1: Schematic diagram of anthrax transmission between 
humans and livestock  

 

 

2.1.2 Integer order of the model 

From Figure 1, a system of integer-order ordinary differential 

equations is presented as follows. 

𝑑𝐻1

𝑑𝑡
= 𝛿ℎ𝑁ℎ − (

𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
+ 𝜇ℎ)𝐻1  +  𝛽ℎ𝐻3                 
  

𝑑𝐻2

𝑑𝑡
= (

𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
)𝐻1 − (𝜇ℎ + 𝛼ℎ +𝜑ℎ)𝐻2                  

 
𝑑𝐻3

𝑑𝑡
= 𝜑ℎ𝐻2 − (𝜇ℎ + 𝛽ℎ)𝐻3                                             

  
𝑑𝑉1

𝑑𝑡
= 𝛿𝑣𝑁𝑣 −

𝜆𝑣𝑉1V2

𝑁𝑣
− 𝜇𝑣𝑉1 + 𝛽𝑣𝑉3 − 𝜌𝑉1   +  𝜎𝑉4
         

𝑑𝑉2

𝑑𝑡
=

𝜆𝑣𝑉1V2

𝑁𝑣
− (𝜇𝑣  +  𝜑𝑣  + 𝛼𝑣)𝑉2                               

                   
𝑑𝑉3

𝑑𝑡
= 𝜑𝑣𝑉2 − (𝜇𝑣 + 𝛽𝑣)𝑉3                                            

 
𝑑𝑉4

𝑑𝑡
=   𝜌𝑉1  −   𝜎𝑉4                                                          

                              
                             

 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  (3) 

subject to the initial conditions. 

𝑉1(0) ≥ 0,  𝑉2(0) ≥ 0,  𝑉3(0) ≥ 0,  𝑉4(0) ≥ 0; 

𝐻1(0) ≥ 0,𝐻2(0) ≥ 0, 𝐻3(0) ≥ 0,𝐻5(0) ≥ 0 

 

2.1.3 Fractional order of the model 

From system (3), the corresponding fractional order system of the 
Caputo type derivative is as follows. 

 



(CIJST)    3007-3847 (Online) Vol. 1(2) 

CAVENDISH INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY (CIJST)|   https://journals.cavendish.ac.ug/index.php/cjst/article/view/53/32| December, 2024         26 

𝐷𝑡
𝛼1

0
𝐶 𝐻1(𝑡) = 𝛿ℎ𝑁ℎ − (

𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
+ 𝜇ℎ)𝐻1  +  𝛽ℎ𝐻3                 

  

𝐷𝑡
𝛼2

0
𝐶 𝐻2(𝑡) = (

𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
)𝐻1 − (𝜇ℎ + 𝛼ℎ +𝜑ℎ)𝐻2                  

 
𝐷𝑡
𝛼3

0
𝐶 𝐻3(𝑡) = 𝜑ℎ𝐻2 − (𝜇ℎ + 𝛽ℎ)𝐻3                                             

  

𝐷𝑡
𝛼4

0
𝐶 𝑉1(𝑡) = 𝛿𝑣𝑁𝑣 −

𝜆𝑣𝑉1V2

𝑁𝑣
− 𝜇𝑣𝑉1 + 𝛽𝑣𝑉3 − 𝜌𝑉1   +  𝜎𝑉4
         

𝐷𝑡
𝛼5

0
𝐶 𝑉2(𝑡) =

𝜆𝑣𝑉1V2

𝑁𝑣
− (𝜇𝑣  +  𝜑𝑣  + 𝛼𝑣)𝑉2                               

                   
𝐷𝑡
𝛼6

0
𝐶 𝑉3(𝑡) = 𝜑𝑣𝑉2 − (𝜇𝑣 + 𝛽𝑣)𝑉3                                            

 
𝐷𝑡
𝛼7

0
𝐶 𝑉4(𝑡) =   𝜌𝑉1  −   𝜎𝑉4                                                          

                              
                             

 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (4) 

with initial conditions. 

𝑉1(0) ≥ 0,  𝑉2(0) ≥ 0,  𝑉3(0) ≥ 0,  𝑉4(0) ≥ 0; 

𝐻1(0) ≥ 0,𝐻2(0) ≥ 0, 𝐻3(0) ≥ 0  

where 𝐷𝑡
𝛼𝑖

0
𝐶   symbolizes the Caputo type fractional derivative of 

order 𝛼,  0 < 𝛼 ≤ 1 with respect to 𝑡; 

𝐷𝑎
𝐶

𝑡
𝛼f(t) =

1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏)𝑑𝜏
𝑡

𝑎

 

𝑛 − 1 < 𝛼 < 𝑛 
The parameters of the model are defined as follows. 

𝛿ℎ = recruitment rate in the human population  

𝛿𝑣 = recruitment rate in the livestock population 

𝛼ℎ =  rate at which infected humans die of Anthrax 

𝛼𝑣 =  rate at which infected livestock die of Anthrax 

𝛽ℎ =  rate at which recovered humans lose immunity and become 
susceptible again 

𝛽𝑣 =  rate at which recovered livestock lose immunity and become 
susceptible again 

𝜆ℎ = rate of infection from human-to-human population 

𝜃 = rate of infection from animal to human population 

𝜆𝑣 = rate of infection in livestock population  

𝜇ℎ = rate at which natural death occurs in the human population 

𝜇𝑣 = rate at which natural death occurs in the livestock population 

𝜑ℎ  =  rate at which infected humans recover from the disease 

𝜑𝑣 =  rate at which infected livestock recover from anthrax disease 

 𝜎 =  rate at which vaccinated livestock become susceptible due to 
loss of immunity  

𝜌 = proportion of livestock vaccinated 
 
 

2.2 Analysis of the Model 

The analysis of system (4) will be carried out. First, the steady states 
of the system are determined, the disease-free and endemic 
equilibrium points in other words. Hence, the analysis of the 
equilibrium points is carried out to determine the stability of the 
fractional order model. 

2.2.1 Equilibrium points of the fractional order model 

There are two equilibrium points: the Disease-Free Equilibrium 
(DFE) and the Endemic Equilibrium (EE) point. To obtain these, 

system (4) is equated to zero and solved homogeneously as follows. 

𝐷𝑡
𝛼1

0
𝐶 𝐻1(𝑡) = 𝐷𝑡

𝛼2
0
𝐶 𝐻2(𝑡) = 𝐷𝑡

𝛼3
0
𝐶 𝐻3(𝑡) 

= 𝐷𝑡
𝛼4

0
𝐶 𝑉1(𝑡) = 𝐷𝑡

𝛼5
0
𝐶 𝑉2(𝑡) = 𝐷𝑡

𝛼6
0
𝐶 𝑉3(𝑡) 

= 𝐷𝑡
𝛼7

0
𝐶 𝑉4(𝑡) = 0  

When the disease is not present it implies there are no infections and 
recovery. Hence, the disease-free equilibrium can be obtained as 
follows. 

𝛿ℎ𝑁ℎ − (
𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
+ 𝜇ℎ)𝐻1  +  𝛽ℎ𝐻3 = 0  (5) 

𝛿𝑣𝑁𝑣 −
𝜆𝑣𝑉1V2

𝑁𝑣
− 𝜇𝑣𝑉1 + 𝛽𝑣𝑉3 − 𝜌𝑉1   +  𝜎𝑉4 = 0  (6) 

  𝜌𝑉1  −   𝜎𝑉4    =  0    (7) 

From (5) since there is no infection, we have that; 

𝛿ℎ𝑁ℎ − 𝜇ℎ𝐻1 = 0  

𝛿ℎ𝑁ℎ  = 𝜇ℎ𝐻1   

∴  𝐻1 =
𝛿ℎ𝑁ℎ

𝜇ℎ
 = 𝐻1

∗   

From (6) since there is no infection, we have that; 

𝛿𝑣𝑁𝑣 − (𝜇𝑣 + 𝜌)𝑉1   +  𝜎𝑉4 = 0   (8) 

From (7); 

𝑉4 =  
𝜌𝑉1

𝜎
      (9) 

Substituting (9) in (8); 

𝛿𝑣𝑁𝑣 − (𝜇𝑣 + 𝜌)𝑉1   +  𝜎 (
𝜌𝑉1

𝜎
)
 
= 0  

𝛿𝑣𝑁𝑣 − (𝜇𝑣 + 𝜌)𝑉1   +  𝜌𝑉1 = 0  

𝛿𝑣𝑁𝑣 − 𝜇𝑣𝑉1 − 𝜌𝑉1   +  𝜌𝑉1 = 0  

𝛿𝑣𝑁𝑣 − 𝜇𝑣𝑉1 = 0  

Hence. 

𝑉1 =
𝛿𝑣𝑁𝑣

𝜇𝑣
= 𝑉1

∗  

This implies that; 

𝑉4 =  
𝜌

𝜎
(
𝛿𝑣𝑁𝑣

𝜇𝑣
) = 𝑉4

∗  

Hence,  

 DFE = (𝐻1
∗, 𝐻2

∗, 𝐻3
∗, 𝑉1

∗, 𝑉2
∗, 𝑉3

∗, 𝑉4
∗) =

(
𝛿ℎ𝑁ℎ

𝜇ℎ
, 0,0,

𝛿𝑣𝑁𝑣

𝜇𝑣
, 0,0,

𝜌

𝜎
(
𝛿𝑣𝑁𝑣

𝜇𝑣
)) 

Obtaining the endemic equilibrium point for system (5), the basic 

reproduction number (𝑅0)  is determined using the next-generation 
matrix. The basic reproduction number is the threshold parameter 
that governs the spread of a disease. The next generation matrix is 

defined as; 𝐾 = 𝐹𝑃−1 and 𝑅0 = 𝜏(𝐹𝑃
−1) where 𝜏(𝐹𝑃−1) denotes 

the spectral radius of 𝜏(𝐹𝑃−1). The basic reproduction number 𝑅0, 
is defined as the spectral radius of the next-generation matrix. The 
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spectral radius of a matrix A is defined as the maximum of the 
absolute values of the eigenvalues of the matrix. 

𝐴: 𝜏(𝐴) = 𝑠𝑢𝑝{|𝜀|}: 𝜀 ∈ 𝜏(𝐴) where 𝜏(𝐴) represents the set of 

eigen values of the matrix A. 

Considering only the infective compartments of the system (5); 

𝐷𝑡
𝛼2

0
𝐶 𝐻2(𝑡) = (

𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
)𝐻1 − (𝜇ℎ + 𝛼ℎ +𝜑ℎ)𝐻2 (10) 

𝐷𝑡
𝛼5

0
𝐶 𝑉2(𝑡) =

𝜆𝑣𝑉1V2

𝑁𝑣
− (𝜇𝑣  +  𝜑𝑣  + 𝛼𝑣)𝑉2     (11) 

Let 𝐹 = [
(
𝜆ℎ𝐻2 + 𝜃𝑉2

𝑁ℎ
)𝐻1

𝜆𝑣𝑉1V2

𝑁𝑣

],  

𝑃 = [
−(𝜇ℎ + 𝛼ℎ +𝜑ℎ)𝐻2
−(𝜇𝑣  +  𝜑𝑣  + 𝛼𝑣)𝑉2 

] 

Let F and P be represented by; 

  𝐹 = [

𝜕𝑓1

𝜕𝐻2

𝜕𝑓1

𝜕𝑉2
𝜕𝑓2

𝜕𝐻2

𝜕𝑓2

𝜕𝑉2

] = [

𝜆ℎ𝐻1 

𝑁ℎ

𝜃𝐻1 

𝑁ℎ

0
𝜆𝑣𝑉1

𝑁𝑣

]   (12) 

𝑃 = [

𝜕𝑓1

𝜕𝐻2

𝜕𝑓1

𝜕𝑉2
𝜕𝑓2

𝜕𝐻2

𝜕𝑓2

𝜕𝑉2

]  

= [
−(𝜇ℎ + 𝛼ℎ + 𝜑ℎ) 0

0 −(𝜇𝑣  +  𝜑𝑣  + 𝛼𝑣)
]   (13) 

Substituting the DFE into equation (12) 

𝐹 = [

𝜆ℎ𝐻1
∗ 

𝑁ℎ

𝜃𝐻1
∗ 

𝑁ℎ

0
𝜆𝑣𝑉1

∗
 

𝑁𝑣

]     (14) 

Taking the inverse of equation (13), it becomes. 

𝑃−1 = [
−

1

𝜇ℎ+ 𝛼ℎ+𝜑ℎ
0

0 −
1

𝜇𝑣 + 𝜑𝑣 +𝛼𝑣

]   (15) 

𝐹𝑃−1 = [
−

𝜆ℎ𝐻1
∗

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝑁ℎ
−

𝜃𝐻1
∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁ℎ

0 −
𝜆𝑣𝑉1

∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁𝑣

]  (16) 

The eigenvalue matrix is given as follows; 

[
−

𝜆ℎ𝐻1
∗

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝑁ℎ
− 𝐴 −

𝜃𝐻1
∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁ℎ

0 −
𝜆𝑣𝑉1

∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁𝑣
− 𝐴

] = 0 (17) 

𝐴2 − {(
𝜆ℎ𝐻1

∗

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝑁ℎ
) + (

𝜆𝑣𝑉1
∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁𝑣
)}𝐴 = 0  (18) 

Hence, 

 

𝐴 = 0 or 𝐴 = (
𝜆ℎ𝐻1

∗

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝑁ℎ
) + (

𝜆𝑣𝑉1
∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁𝑣
).  

Considering the dominant eigenvalue. 

𝑅ℎ𝑣  = (
𝜆ℎ𝐻1

∗

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝑁ℎ
) + (

𝜆𝑣𝑉1
∗

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝑁𝑣
)  (19) 

Where 𝑅ℎ and 𝑅𝑣 represents the reproduction numbers for human 

and livestock populations respectively. 

Since  

(𝐻1
∗, 𝐻2

∗, 𝐻3
∗, 𝑉1

∗, 𝑉2
∗, 𝑉3

∗, 𝑉4
∗) = (

𝛿ℎ𝑁ℎ

𝜇ℎ
, 0,0,

𝛿𝑣𝑁𝑣

𝜇𝑣
, 0,0,

𝜌

𝜎
(
𝛿𝑣𝑁𝑣

𝜇𝑣
)) 

this implies that. 

𝑅ℎ =
𝛿ℎ𝜆ℎ

(𝜇ℎ+ 𝛼ℎ+𝜑ℎ)𝜇ℎ
     (20) 

𝑅𝑣 =
𝛿𝑣𝜆𝑣

(𝜇𝑣 + 𝜑𝑣 +𝛼𝑣)𝜇𝑣
     (21) 

 

2.2.2 Global Stability of Disease-free and Endemic Equilibrium 

The analysis of Osman et al (2018) shows that the disease-free 
equilibrium is globally asymptotically stable by proving that; if the 

disease-free equilibrium is less than one (𝑅ℎ𝑣 < 1) then it is globally 

asymptotically stable in the interior of  𝐻1, 𝐻2, 𝑉2 ∈ Փ. On the other 

hand, the endemic equilibrium only exists when 𝑅ℎ𝑣 ≤ 1 and it is 
globally asymptotically stable.  

 

3. The Algorithm 

In this section, we introduce Physics-Informed Neural Networks 
(PINNs), a pivotal algorithm slated for utilization in simulating the 
dynamics of the disease. PINNs represent a sophisticated 
computational tool that seamlessly integrates neural networks with 
physical principles, thereby enabling the assimilation of domain 
knowledge into the learning process. By leveraging PINNs, we aim 
to achieve a comprehensive understanding of the underlying 
mechanisms governing disease transmission dynamics. This 
approach holds promise for enhancing predictive accuracy and 
capturing intricate interactions within the Anthrax transmission 
system, thereby bolstering the efficacy of our modelling endeavors. 

 

3.1 Physics-Informed Neural Network 

Physics-informed neural networks were first proposed by Raissi et al 
(2019). The physics-informed neural networks are neural networks 
that are trained to solve supervised learning tasks while respecting 
any given law of physics described by general nonlinear partial 

differential equations.  

3.1.1 Formulation of Physics Informed Neural Network 

Let 𝑈(𝑡) be the vector of all the compartments in the system (5), 
then the coupled system of differential equation governing the 
dynamics of that model can be written as; 

 𝛹 𝑈(𝑡)  =  𝐹(𝑈(𝑡), 𝛽)   (22) 
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where 𝛹 may be integer-order or fractional-order temporal 

differential operator, F is a nonlinear operator and 𝛽 is the set of 
known or unknown model parameters. 

The formulation of PINNs is to construct a physics-informed deep 
learning algorithm to solve the forward and inverse problems 
involving differential equations by employing a deep neural network 

to approximate the unknown function. Let 𝑁𝑁(𝑡, 𝜗) be a deep 

neural network having input 𝑡 and parameterized by 𝜗 as weights and 
biases of the network. The solution of the differential equation is 

approximated by the neural network;   

𝑈(𝑡)  ≈  𝑁𝑁(𝑡, 𝜗)    (23) 

The residual is defined as; 

 𝑅𝑁𝑁(𝑡)  =  
𝑑

𝑑𝑡
 𝑁𝑁(𝑡) − 𝐹(𝑁𝑁(𝑡), 𝛽)  (24) 

and encode this residual into the network. 

 

3.1.2 Loss Function 

Two finite sets of training points  {𝑡𝑢
𝑖 }𝑖=0
𝑁𝑢   and residual points {𝑡𝑟

𝑖 }𝑖=0
𝑁𝑟  

is defined. The training points are the points where data is available, 

and the residual points are the points where the residual 𝑅𝑁𝑁(𝑡)  is 
satisfied, and they are randomly selected over the entire 
computational domain. Hence, the loss function of PINN is given 

as; 

𝐿(𝜗, 𝛽) = 𝑤𝑢𝑀𝑆𝐸𝑢 + 𝑤𝑟𝑀𝑆𝐸𝑟  (25) 

𝑤𝑢𝑀𝑆𝐸𝑢 = 𝑤𝑢
1

𝑁𝑢
∑ |𝑁𝑁(𝑡𝑢

𝑖 ) − 𝑈𝐷(𝑡𝑢
𝑖 )|

2𝑁𝑢
𝑖=1  (26) 

and 

𝑤𝑟𝑀𝑆𝐸𝑟 = 𝑤𝑟
1

𝑁𝑢
∑ |

𝑑

𝑑𝑡
 𝑁𝑁(𝑡𝑟

𝑖 ) − 𝐹(𝑁𝑁(𝑡𝑟
𝑖 ), 𝛽)|

2𝑁𝑅
𝑖=1     (31) 

where MSE is the mean square error. The loss function of PINN 

contains two terms. The 𝑀𝑆𝐸𝑢 which measures the mismatch 

between solution 𝑁𝑁(𝑡) and data 𝑈𝐷 at the training points in the 
training set. This depends on data availability on the epidemiological 

classes.  The other term, 𝑀𝑆𝐸𝑟 penalizes the governing equation at 
the residual points. 

 

3.1.3 The Schematic Diagram of Physics-Informed Neural 
Network 

From Figure 2, layer A is the input layer with a single neuron, this 

layer takes in data 𝑡 of the system (4) into the single neuron which 
will transmit to layer B. Layer B is known as the hidden layer with 
multiple neurons, it multiplies the data by the neurons respective 
weights(w), add it to the bias(b) and then activate it with an activation 

function (𝑓) before transmitting the result to layer C. Layer C is also 
considered a hidden layer with multiple neurons, it does similar 
operation with layer B and what it passes to layer D (output layer 
with a single neuron) is the prediction of the solution of system (3.4). 
From here the ODEs residual is calculated and the data loss is also 

calculated. If epsilon (𝜀) is greater than the total loss then the weights 
are adjusted and the process is repeated otherwise the predicted 

solution is equivalent to the exact solution of the system. 

Figure 2: Schematic diagram of physics-informed neural network 

 

4. Numerical Results and Analysis 

During this research, a comprehensive dataset documenting 
occurrences of anthrax disease within both human and livestock 
populations of Nigeria was not readily available for integration into 
the training regimen of the Physics-informed Neural Network. In 
light of this scarcity, data synthesis became necessary, utilizing 
disease parameters sourced from pertinent literature references, as 
delineated in Table 1. This synthesis encompassed data pertaining 
to the 2024 human population of Nigeria 
(https://worldpopulationreview.com/countries/nigeria-population) 
and the livestock population 
(https://www.researchgate.net/figure/Nigeria-livestock-
population-estimates_tbl1_3379459241/4), encompassing sheep, 
cattle, and goats. For the purpose of subsequent testing, fractional 

parameters denoted as 𝛼1, . . . , 𝛼7were stipulated, as outlined in the 
respective table. 

Table 1  Disease Parameters 

Paramet
er 

Description Value Reference 

𝛿ℎ 
recruitment rate in the human 
population 

0.2 Osman et al, 2018 

𝛿𝑣 
recruitment rate in the livestock 
population 

0.005 Osman et al, 2018 

𝛼ℎ 
the rate at which infected humans 
die of Anthrax 

0.2 Osman et al, 2018 

𝛼𝑣 
the rate at which infected livestock 
die of Anthrax 

0.45 Osman et al, 2018 

𝛽ℎ 
rate at which recovered humans’ loss 
immunity and become susceptible 
again 

0.006 Osman et al, 2018 

𝛽𝑣 
the rate at which recovered livestock 
loss immunity and become 
susceptible again 

0.00005 Osman et al, 2018 

𝜆ℎ 
rate of infection from human-to-
human population 

0.00005 Assumed 

𝜃 
rate of infection from animal to 
human population 

0.00005 Assumed 

𝜆𝑣 
rate of infection in the livestock 
population 

0.00005 Osman et al, 2018 

𝜇ℎ 
the rate at which natural death 
occurs in the human population 

0.0001 Osman et al, 2018 

𝜇𝑣 
the rate at which natural death 
occurs in the livestock population 

0.0004 Osman et al, 2018 

𝜑ℎ 
the rate at which infected humans 
recover from the disease 

0.75 Osman et al, 2018 

𝜑𝑣 
rate at which infected livestock 
recover from anthrax disease 

0.0025 Osman et al, 2018 

𝜎 
rate at which vaccinated livestock 
become susceptible due to loss of 
immunity 

0.002 Osman et al, 2018 

𝜌 
the proportion of livestock 
vaccinated 

0.0001 Osman et al, 2018 
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Table 2  Fractional Parameters 

Parameter Value 

𝛼1 0.97 

𝛼2 0.85 

𝛼3 0.86 

𝛼4 0.87 

𝛼5 0.979 

𝛼6 0.89 

𝛼7 0.87 

 

Upon training the model specified in equation for a total of 41,000 

epochs, the ensuing results were as follows: 

Figure 3: Plots of Actual and predicted values of Anthrax in the 
Human population compartments  

 

in Figure 3 the plots of Susceptible humans (H1), Infected humans 
(H2) and Recovered humans (H3) are been presented corresponding 
to the predicted values. 

Figure 4: Plots of Actual and predicted values of Anthrax in 
Livestock population compartments  

 

Similarly, in Figure 4, the plots of Susceptible livestock (V1), Infected 
livestock (V2), Recovered livestock (V3) and Vaccinated livestock 

(V4) are also presented. The plots correspond to the predicted values 

Figure 5: Lower and Upper solution in the human population 
compartments 

 

The figure illustrate the lower and upper solutions for each 
compartment within the human population, as referenced in Figure 

5. 

Figure 6: Lower and Upper solution in the livestock population 
compartments 

 

The corresponding graphical representation for the livestock 
population, as referenced in Figure 6, illustrates the lower and upper 

solutions for each compartment. 
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Figure 7: Future prediction of Anthrax dynamics in Human 
Population 

 

In Figure 7, a comprehensive portrayal of the anticipated future 
dynamics of Anthrax disease within the human population is 
meticulously presented, offering invaluable insights into the 
projected trajectory of the disease's prevalence and its potential 

implications. 

Figure 8: Future prediction of Anthrax dynamics in Livestock 
Population 

 

Figure 8 provides a detailed visualization of the predicted future 
dynamics of Anthrax disease within the livestock population. This 
graphical representation offers a nuanced understanding of the 
anticipated trends and potential implications for livestock health and 
management practices. 

Figure 9: Estimated Fractional order Parameters 

 
Table 4 provides evaluation metrics for different variables, including 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
R-squared (R2) values. 

 For variable H1, the MAE and RMSE are relatively high, indicating 
a significant difference between predicted and actual values. 
However, the R2 value is close to 1, suggesting a strong correlation 
between predicted and actual values. 

 Variable H2 has lower MAE and RMSE compared to H1, indicating 
better model performance in terms of accuracy. However, the R2 
value is relatively low, suggesting that the model explains only a 

moderate amount of the variance in the data. 

 Variable H3 has very low MAE and RMSE values, indicating 
excellent model accuracy. The high R2 value close to 1 suggests that 
the model explains almost all of the variance in the data. 

 Variables V1, V3, and V4 show similar patterns with very low MAE 
and RMSE values and high R2 values close to 1, indicating high 
model accuracy and good explanatory power. 

 Variable V2 has moderate MAE and RMSE values and a relatively 
lower R2 value compared to other variables, indicating moderate 
model accuracy and explanatory power. 

Consequently, the analysis suggests that the model performs well in 
predicting variables H3, V1, V3, and V4, while variables H2 and V2 
may require further investigation or model improvement to enhance 
predictive performance. 

The estimations of the fractional order parameters are graphically 
depicted within a plot, as showcased in Figure 9, elucidating their 
convergence pattern across training epochs. 

Figure 10: Plot of Model Loss 
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Figure 10 displays the plot of model loss, offering a visual 
representation of the evolution of loss values over the course of 
training. 

Table 4: Accuracy Analysis 

Variable Mean 
Absolute 

Error 

Root Mean 
Square Error 

R-Squared 
(R2) 

H1 860435.198160 
 

1.095160e+06 
 

0.999997 
 

H2 435.422856 
 

1.632949e+03 
 

0.516322 
 

H3 3.630468 
 

5.954185e+00 
 

0.999984 
 

V1 64453.642824 
 

7.641015e+04 
 

0.999992 
 

V2 68.856648 
 

2.469425e+02 
 

0.878923 
 

V3 0.008947 
 

1.220064e-02 
 

0.999986 
 

V4 1174.344778 
 

1.641727e+03 
 

0.999996 
 

 

5. Discussion and Conclusion 

The fractional compartmental model, designed to analyze 
Anthrax disease transmission dynamics in both human and 
livestock populations, yields valuable insights into the spread of 
the disease. The model's results indicate notable relationships 
between various parameters and the transmission dynamics. 

Reducing the animal recovery rate is observed to correlate with 
an increase in disease spread across both human and animal 
populations. Likewise, an increase in human recruitment rate 
leads to heightened disease transmission, given the absence of 
vaccination measures in the human population. Conversely, 
decreasing human and livestock recruitment rates, as well as 
livestock and human transmission rates, is associated with a 

decrease in disease transmission, slowing down its propagation.  

The model's significance lies in its ability to elucidate Anthrax 
transmission dynamics by highlighting the collective impact of 
parameters across human and animal populations. The transition 
from the integer compartmental model proposed by Osman et 
al. (2018) to a fractional formulation, integrated with a physics-
informed neural network, represents a notable improvement. 
Unlike the integer model, the fractional model delineates the 
specific rate of change for each compartment, providing a more 
detailed understanding of disease dynamics. 

The convergence of fractional parameters depicted in Figure 9 
indicates their predictive capacity regarding compartmental 

dynamics over time, achieved through training the model across  

multiple epochs. This convergence enhances the model's 
accuracy and reliability in forecasting Anthrax transmission 

patterns. 

Anthrax is a zoonotic disease that has caused the death of many 
humans and livestock in the regions where it has broken out. Hence, 
it is essential to be aware of the outbreak of this disease, as it is still 
endemic in many regions. This paper illustrates how this disease 
interacts in both human and animal populations. The infection force 
originates from the livestock population and affects the human 
population, as anthrax disease is associated with animals, particularly 
herbivores like sheep, goats, and cattle. If animals are protected from 
this disease, the infection rate will drastically reduce, leading to the 
disease dying out. 
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